Linked In Facebook Twitter YouTube PUMC Blog Subscribe (203) 743-6741

Monthly Archives: July 2019


By David Bohn

Read the article in Facilities Manager here!

Upgrading or replacing a boiler system presents one of the most daunting and expensive challenges a large facility can undertake. When the time comes—whether the current system is outdated and inefficient or it fails outright—facility management must take the time to fully understand the process in order to set facility management goals and make the right decisions to fulfill their energy and efficiency needs. Right now, a substantial number of colleges and universities, as well as more than 1,200 Veteran’s Administration medical center campuses across the country, are all undertaking system overhauls like this.

These system upgrades are driven primarily by environmental concerns. Most of the facilities will need to update their equipment, but some will require a full-system replacement. It’s a huge undertaking—but most administrators believe that the long-term savings will make the effort worthwhile.

Why make the change now?

One of the driving factors in getting this change implemented right away is regulatory. California, Texas, and New Jersey have implemented air quality standards that will not be met by older boiler systems. They must be upgraded or replaced.

These old systems often used technology that sacrificed environmental safety in favor of cost savings. Some systems incorporated metal mesh burners, which utilized filters that clog easily. The gradual clogging of air filters leads to less excess air, which leads to higher NOx emissions. NOx emissions are a combination of nitric oxide (NO) and oxygen. Nitric oxide is the result of fuel combustion and alone is not considered hazardous; however, combined with oxygen, it is the source of fog, acid rain, and ground level ozone, which has been linked to myriad health issues. And while some other systems might have utilized technology to reduce overall NOx, these systems had increased electricity costs.

A second reason for a system upgrade, therefore, is to address these cost concerns. Today’s upgrades do not require air filters, which used to add to operation costs. Upgraded systems also offer quick-change, dual-fuel capabilities, switching between gas and oil firing in less than three minutes. This saves on service costs, since multiple people are no longer needed to make the changeover. The greatest cost reduction, however, is in the demand for electricity. There is a reduction of up to 60 percent in electric consumption.

One way to realize a cost savings is by employing a system that allows one to adjust the output according to the demand. This adjustment is achieved via what is called the unit’s “boiler turndown ratio,” which is the ratio of the maximum heat output to the minimum heat output at which the boiler will operate both efficiently and controllably. As the desired temperature/pressure point is reached, the heat source is turned down, and if the temperature/pressure falls, the heat is turned up. In large campus applications, which require boilers to operate at a low proportion of their maximum output, a high turndown ratio is desired, and that can be achieved with modern upgrades. Traditional burners using fiber metal mesh provide a 3:1 turndown; however, with recent advancements in the field, there are now systems that can provide a 9:1 turndown or higher depending on NOx requirement. These systems can achieve ultra-low NOx emissions without the use of FGR (flue gas recirculation).

In addition to the cost savings realized through a 9:1 turndown, there is also the reduction in required maintenance. Not only are multiple people no longer needed for a dual-fuel changeover, but operating and monitoring the systems are also simplified. Older systems require constant maintenance to ensure fuel efficiency and emission control. For example, many older systems include jackshaft linkage. Due to the complexity of these systems, they require constant fine-tuning and maintenance by highly skilled operators. Maintenance of an upgraded or new system is far less complex.

Newer monitoring equipment also means fewer people are needed for hands-on examination of the system. Typically, with an older system, there was a boiler in each building—and that meant someone needed to be on location to monitor those systems. The ability to house the entire system in one location, or to upgrade the system to monitor from one location, results in lower maintenance costs.

Campuses making the changes

Higher education is becoming a competitive industry and honestly, who chooses a college or university because of how new the boiler equipment is? The utility plant is seen as a cost, and universities generally choose to invest in new buildings or facilities that will help them attract students. But with environmental awareness now a prominent part of the national discussion, universities are starting to see the value (both economic and otherwise) to going green. Here are a few examples:

A small, elite liberal arts college in Duchess County NY was working with old boilers that essentially could not fire. To fix the problem, they chose new burners that were compatible with their old boilers which saved them a great deal of money since they didn’t need to replace the whole system. They also replaced their vacuum condensate system for further modernization and efficiency. They are now planning to buy a second burner and are interested in a solution that burns liquid wood.

A prestigious medical school outside of Boston invested in new burners. Their solution provider helped them with reliable low life cycle cost/best value payback on their low pressure steam boilers by providing three 800 HP burners and a feedwater system. They burn natural gas with #2 oil as a back-up, and are actively considering carbon neutral fuels.

The campus heating plant main boiler suffered from several crippling issues at a large public college campus in upstate NY. Working with a vintage 600 HP steam boiler, the burner had a triplex nozzle system that was an issue from day one. The burner was low fire, disastrous and unrepeatable when cycled, and created uneven fires from the three nozzles that would not hold a tune-up. The nozzles constantly needed cleaning and adjusting. Only one person in the boiler room could keep it running for more than a week. They went with a proven installer who recommended a solution that holds a tune-up and remains stable with cycle repeatability in the lower firing ranges.

A medium sized Christian College in Providence RI was interested in going far beyond EPA requirements in order to reduce their emissions and maintain their electrical and combustion efficiency. They selected a solution to achieve the best of both worlds: 22pm NOx on two 900 HP burners with natural gas and #2 oil, with Burnermate Universal controls on both burners/boilers.

A very small private college in central MA was provided a 600 HP burner for an old boiler that was previously fired by a burner from a company that went out of business a few years ago. They also selected the Burnermate Universal controls. Before this, they had been shut down for a few years and faced an unreliable boiler plant. They chose the fuels that were readily available and may consider other options as they continue to invest in infrastructure.

VA Medical Center Case Study

VA Medical Center, Erie, Pennsylvania – Generally, systems that have been in service for 25 to 30 years would require replacement instead of an upgrade. Their system had been in place for three decades and required complete replacement. In order to make the most impact with this important project, they built an entirely new boiler plant from the ground up.

The engineering team at the V.A. determined that existing system had met its lifespan, and they wanted to replace with latest technology. Any short-term replacement would have simply been a Band-Aid. They realized, however, that a project of this magnitude would take time to do properly. The engineering team at the V.A. chose Greenland Enterprises, Inc. to handle the entire project based on their central plant expertise and track-record at other healthcare facilities.

Based on the campus steam load, they determined that the replacement equipment would consist of two 400-horsepower boilers and one 200-horsepower boiler. Installation of the new boiler system took four months. From the ground up (including the new construction), the work on the project took 14 months to complete.

This new plant will provide at least a 60 percent reduction in electricity consumption, which will be accomplished using a variable frequency drive. This technology can run with fan speed at a lower rate. For example, changing the power from 60hz to 30hz speed can cut the horsepower by eight times. Therefore, a 400-horsepower system would be cut to 60-horsepower. According to Steve Seckler, Vice President of Operations at Greenland Enterprises, “Most systems can go from 60hz to 40hz easily. We chose a system that can efficiently go all the way from 60hz to 15hz for additional savings.”

Fuel reduction provides cost savings over the life of the new system. Newer boiler systems can offer a savings of two to five percent. This means that one 400-horsepower boiler with a fuel cost of $500,000 annually can save between $10,000 and $25,000 a year. This new Erie plant, with its two 400-horsepower boilers and one 200-horsepower boiler, will save the hospital between $25,000 and $62,500 in fuel costs annually.

Is it time for an upgrade at your facility?

A boiler upgrade project like the one undertaken at the V.A. Erie Medical Center is clearly something that takes significant time and money to complete. But in the end, management determined that the expense and effort will pay off in the long run. Could it be time for you to look at a similar project for your facility? Here are some points to consider when making your decision.


In large facilities, sustainability can be neglected when considering boiler systems. Facilities like college campuses often rely on older boilers and choose the “Band-Aid” approach of patching and maintaining them out of necessity. This method is not sustainable. Upgrading to a new boiler is the best option for long-term, sustainable improvement.

Sustainability also refers to the environmental impact of a system. With ever-changing state requirements, it is important to choose a system with enough flexibility to face these new demands as well as future ones.


To sufficiently meet the heating and energy load demands of healthcare facilities, old boilers burn an inordinate amount of fuel. New boilers bring added efficiency and substantial fuel savings. There is also much being done in the realm of alternative fuels for boiler systems. Bio-fuels and liquid wood are two segments of the alternative fuel market that are making great strides.

Operation and Maintenance

New boilers are streamlined to operate more smoothly and efficiently than old boilers, which can be challenging to operate and maintain. The older boilers often take much longer to heat up, and they are often kept running to meet heating needs. New boilers are designed to heat up quickly and can be adjusted to handle variable loads to ensure less energy consumption.

When considering an upgrade or replacement, no matter what the reason may be, all factors of the operation need to be addressed in preparation for a system shut-down. A project of this magnitude, from the initial bid process to completion, will require a minimum of several months (for an upgrade) up to a year or more (for a complete boiler replacement). The impact of this change, and thus the importance of the decisions made during the process, are why so many campuses are carefully reviewing their future energy options.

David Bohn is President and CEO at Preferred Utilities Manufacturing Corporation, an engineering-based manufacturer of products for commercial, institutional, industrial and nuclear power facilities.


Read the article in Today’s Boiler

By David Bohn

If you can’t afford to replace your boiler system, new fuels and innovative technologies are the answer.

Fueling boilers has become more complicated. Many conventional fuels are now impractical because they can be dirty and expensive, and they are sometimes incompatible with modern environmental regulations. This creates a challenge since changing out an entire boiler system is a massive expense. Is it possible that your current system could work with new, environmentally friendly fuels?

The answer is yes, at least when it comes to these groundbreaking new fuel options.

The latest innovations in biofuel technology

Traditional biofuels such as wood chips or pellets, while preferable to non-renewable fossil fuels, have still been found to have a negative environmental impact that can be problematic in many applications. A relatively recent innovation in the sector involves replacing wood chips with a fuel known as “bio-oil” (also referred to as “liquid wood”). While this biofuel is more environmentally friendly, some users found it incompatible and difficult to use at first—but that is now changing. Boilers can be more easily modified to be compatible with liquid wood, and the cost is about one-tenth that of replacing the system.

Created by Ensyn Technologies Inc. out of Ontario Canada, liquid wood is produced using a thermochemical process called pyrolysis, in which wood is burned in excess of 500º C (in the absence of oxygen) and is transformed into a combustible liquid. Because there is no oxygen, the wood does not combust. It first becomes charcoal, and then further decomposes into gas and liquid. It behaves similarly to natural gas or crude oil except that it has much lower carbon emissions.

Liquid wood still has the advantage of being a renewable wood-based resource. The raw wood used to create liquid wood is harvested from tree farms—and more trees can continuously be planted to replace those used for fuel oil. Reducing dependence on fossil fuels and other non-sustainable sources is critical to reducing overall greenhouse gas emissions, and turning the raw wood into liquid wood fuel increases the environmental benefits even further.

An added advantage is that liquid wood is less cumbersome to store than wood chips or pellets. In order to utilize wood chips, the user must address two onerous tasks—turning the bulk wood into chips, and then storing the chips themselves until they are used. There is also the challenge of getting the wood chips or pellets to the burner as they are not often stored in the same location. The logistics involved in managing chipping and storage can lead to significant added costs, as Bates College in Maine discovered.

Bates recently overhauled their campus heating system. They weighed the idea of converting to wood chips, but they found that building a wood chipping plant and storing the wood chips on campus would have cost a startling $10 million upfront. When they realized they could achieve the same environmental benefits by converting to liquid wood instead of wood chips, while only spending $1 million on the conversion, the choice was easy. They implemented liquid wood as their primary heating source and saw their carbon footprint reduced by an astounding 83 percent.

What is Bio Residual™ oil?

One of the newest innovations in environmentally responsible fuel is bio-residual oil (BRO. This renewable energy source has 85 percent lower emissions that typical fossil fuels and has the potential to reduce carbon emissions in the United States by thousands of tons per year.

Made by Renewable Energy Group in Ames, Iowa, Bio Residual™ Oil is the biodiesel equivalent of No. 6 oil. It is made up of all the heavy hydrocarbons left over after the refining of biodiesel, which can be made from diverse biological materials such as agricultural waste, animal fats, and recycled cooking oil. BRO™ is too heavy and viscous to be burned in an engine, so Renewable Energy Group has been working with Preferred Utilities Manufacturing to test the capabilities of BRO as a boiler fuel.

Preferred’s engineers Chuck White and Dan Wallace have now adapted one of their burners to cleanly burn BRO.

Striking the balance between electrical consumption and NOx emissions

Although greenhouse gases are the chief focus of most sustainability goals, they are not the only emissions to consider. Industrial boilers also emit nitrogen oxide (NOx), which is a significant air pollutant and is the key component in smog. These NOx emissions are regulated by the EPA and state agencies, with standards becoming steadily tighter since the 1990s.

Unfortunately, decreasing NOx emissions means upping electrical usage—the lower the NOx, the more electricity required. This can be a source of concern for those looking at low-NOx burners. They face the tough choice of either getting a system with the lowest possible emissions while sacrificing significant electrical efficiency, or else using a higher emissions system (that might become obsolete in a few years if regulations continue to get stricter) in an attempt to save on electricity. This rock-and-a-hard-place dilemma is even tougher in states with high electrical costs such as Connecticut and Hawaii.

The solution lies in the flexibility afforded by a new generation of low-NOx burners with configurable emissions. These systems can be configured to meet current regulations or targets, while operating at the highest electrical efficiency possible. Should regulations ever change, the burner can easily be updated for the new target NOx levels.

The demand for fuels that will have minimal negative environmental impact and not contribute to harmful CO2 emissions is ever-growing for many reasons. Regulation of the industry is likely to continue and become more stringent, “green” methods are becoming more economically desirable, and, perhaps most importantly, manufacturers are actively seeking ways to use renewable resources because they believe it is the responsible thing to do. Innovations like liquid wood and BRO, as well as new configurable low-NOx burners, are helping customers to reach their renewable energy goals in ways that maximize positive results for their bottom line and for the environment.

David Bohn is president and CEO of Preferred Utilities Manufacturing Corporation.


Given today’s skilled workforce shortage, figuring out how to get the most productivity from the fewest workers has become one of a power sector’s top challenges. How can a plant stay on top of its output requirements when finding and retaining qualified workers is so difficult?

With spare man-hours being a luxury few can afford, two questions are at the top of most plant managers’ minds:

1. How can we avoid downtime?

2. Are we maximizing our workers’ time and capability?

Following are stories of two facilities that found the expertise they needed to address those issues with innovative, “outside-the-box” solutions.

Keeping downtime at bay

Downtime has always been a costly and inconvenient burden, and finding the resources to make up for time lost to equipment failure can be nearly impossible. A well-known North American tissue manufacturer found itself with old boiler equipment that was not up to the job and needed to be replaced—but they had to find a solution that wouldn’t cause downtime, which they simply could not afford.

Their old equipment did not reach full heating capacity as required. The boiler was rated for a certain steam output, but the burner couldn’t provide enough heat to make that steam. They had a second boiler, but switching required a start-and-stop process that added up to higher operating costs. Every stop meant purging the boiler with air and adding additional wear-and-tear on the system. The process also meant lost energy and additional man-hours. It was not a sustainable solution.

They needed a more reliable source of heat, along with ability to meet NOx emission requirements with better fuel efficiency and a safer system. If they didn’t get the NOx emissions into compliance, they risked hefty fines from their home state. So what would work?

A combination of a new burner, new fuel piping train, and a new variable frequency drive (vfd) was proposed to address the heating efficiency problem. This combination saved costs by reusing the existing controls (which had just been put in place a few years earlier). They included Preferred Utilities BurnerMate Universal (BMU) parallel positioning controls, a built-in flame safe guard, and a touch-screen user interface.

The company proposing this solution had been servicing the manufacturer for years, so they had the knowledge to not only source the right equipment but also coordinate the entire project. They provided a highly qualified subcontractor who provided a complete turnkey solution, removing the old boiler and completely replacing it, attaching the new burner and gas lines and wiring the controls. They took just 11 days to install all the equipment and get it fully functional. It met NOx emissions standards and achieved higher efficiency and turn-down. The entire project, from initial analysis to completion, took less than eight weeks.

Working with the right consultants in a case like this is particularly important because they must be experienced with a full range of boiler equipment so they can always utilize the one best suited for the application. Without the right expertise they might recommend ill-suited equipment that will be detrimental to plant staff who will need to deal with the repercussions and possible failure in the future. That’s more risked downtime—something that was simply not an option in this application.

The burner installed in this application burned natural gas, achieved a 10-1 turn-down, and reached 30ppm NOx (the previous level was 50ppm). Additionally, the installation included a 40,000 pounds-per-hour steam boiler and a Cleaver Brooks water tube boiler.

Keeping boilers under control

A mammoth steel processing plant was far behind in a boiler upgrade project. They turned to an outside consultant to help them pinpoint the problems in the application and get the project back on track.

This was the largest project of its kind in the United States at the time. The engineer had to guarantee less than 25.65 PPM NOx and less than 48.60 PPM CO. The project also required 85 dBA noise level at three feet. All of these stringent requirements ended up being met.

An added challenged faced by the consultant concerned the type of controls to be implemented in the application. The management of this facility had traditionally been against Human Machine Interface/Operator Interface Terminals (HMI/OIT) and had not allowed them. Given their experience with these types of controls, the consultant’s challenge was to convince the customer that offering an OIT is an advantage.

In the end, this solution was accepted because the consultant offered a BMU. The LCD screen is standard on the BMU and is a back-up that will provide them with the boiler-burner operation should the OIT fail. To assist in the rollout of these new controls, the consultant also offered a two-day on-site training session.

The consultant matched the proper controls to the boilers and fast-tracked the resulting installation. A four-week submittal, proposed to the consulting engineers, got approval for both boilers and burners to proceed with manufacturing and meet the schedule.

The final application included three X-Plus burners on three B&W 60,000 PPH boilers with BMU controls. The control system and VFD was located on a high ambient temperature environment of 139°F and in corrosive atmosphere. All controls, hardware, and VFD were rated for 122°F. NEMA 4X requirement encloses the heat from the temperature rise and will exceed all temperature rating of the electrical components. In order to meet the reliability requirements, the consultant provided a NEMA 4X enclosure with NEMA 4 rated air conditioning system.

In both these applications, timing was critical. They could not allow the boiler system to fail, but they also could not afford a lengthy downtime for upgrades. Overcoming a pre-conceived mindset and looking for creative solutions allowed the facilities to resolve their problems and stay productive. In the end, an outside perspective gave them access to both the knowledge and technology they needed to conserve workforce time and talent.

About the author: David Bohn is President and CEO at Preferred Utilities Manufacturing Corporation, an engineering-based manufacturer of products for commercial, institutional, industrial and nuclear power facilities.